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Abstract

Knowledge transfer is investigated in various natural language processing tasks except
cross-domain constituency parsing. In this paper, we leverage heterogeneous data to trans-
fer cross-domain and cross-task knowledge to constituency parsing. Concretely, we first
select language modeling, named entity recognition, CCG supertagging and dependency
parsing as auxiliary tasks and collect the corpora of these tasks covering various domains
as cross-domain and cross-task heterogeneous data. Second, we exploit three types of
prefixes: shared, task and domain prefix, to merge cross-domain and cross-task data and
decompose the general, task and domain representation in the pretrained language model.
Third, we convert the data formats of multi-source heterogeneous datasets and loss objec-
tives of the auxiliary tasks into a consistent formalization closer to constituency parsing.
Finally, we jointly train the model to transfer task and domain knowledge to cross-domain
constituency parsing. We verify the effectiveness of our proposed model on five target do-
mains of MCTB. Experimental results show that our knowledge transfer model outperforms
various baseline models, including conventional chart-based and transition-based parsers
and the current large-scale language model for zero-shot and few-shot settings.

1. Introduction

Constituency parsing (CP) is a fundamental task in computational linguistics, which aims
to build a hierarchical syntax tree for the given sentence. The current state-of-the-art is a
chart-based parser (Stern, Andreas, & Klein, 2017; Kitaev & Klein, 2018; Tian, Song, Xia,
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& Zhang, 2020; Cui, Yang, & Zhang, 2022), which assigns scores to all the spans within a
sentence and employs the CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967) to
search for the optimal parse tree. Such a parser requires supervised training over manually
labeled data (i.e., treebanks). However, treebank annotation can be extremely expensive
and time-consuming, and only a few domains have large annotated treebanks. As a result,
parsing performances over low-resource domains are still low, leaving constituent parsing
as an unresolved problem.

Knowledge transfer is a key problem for cross-domain constituency parsing. In general,
both task knowledge and domain knowledge can be transferred to improve constituency
parsing. For task knowledge transfer, it has been shown that constituency parsing can be
improved by named entity recognition (Finkel & Manning, 2009) and dependency pars-
ing (Sun & Wan, 2013; Zhou & Zhao, 2019). However, they only focus on the in-domain
setting. Existing work on domain knowledge transfer for constituency parsing (McClosky,
Charniak, & Johnson, 2010; Fried, Kitaev, & Klein, 2019), on the other hand, does not
consider making knowledge transfer from relevant tasks. Intuitively, for maximizing the
utility of manually-labeled resources, a constituency parser should learn knowledge from
both multi-domain constituency corpora and multi-domain corpora for related tasks. In
addition, it should make use of knowledge from unlabeled data.

The above goal poses a significant challenge to modeling, since it requires information
integration from heterogeneous data sources. To this end, it has been shown that a standard
representation model can fail to achieve the most effective knowledge transfer over multiple
loss sources (Søgaard & Goldberg, 2016; Bingel & Søgaard, 2017; Crawshaw, 2020). Existing
work has considered shared-private structure (Liu, Johns, & Davison, 2019a; Wu, Zhang,
Jin, Xue, & Wang, 2019), adversarial loss (Ganin & Lempitsky, 2015; Liu, Qiu, & Huang,
2017), feature transformation and selection (Zhang & Yang, 2022) for transfer learning.
However, most existing methods consider only one dimension in knowledge transfer (i.e.,
either cross-task transfer or cross-domain transfer), and therefore cannot be directly applied
to our setting. Large language models (LLMs) can be strong transfer learners, yet their
performances on structured tasks are not as strong as encoder-only models (Qin, Zhang,
Zhang, Chen, Yasunaga, & Yang, 2023; Li, Zhang, Guo, Zhang, & Zhang, 2023)1. We
investigate a novel multi-prefix encoder-only representation model by adapting the prefix
tuning method for text generation (Li & Liang, 2021) to our parsing problem. The basic
idea is to augment the input token sequence with two types of prefix tokens, which allow
a generic neural representation model to gain domain-specific and task-specific information
respectively.

We choose the method of Kitaev and Klein (2018) as our baseline, which gives the current
state-of-the-art results for constituency parsing. It makes use of a pre-trained BERT (De-
vlin, Chang, Lee, & Toutanova, 2019) model, which contains generic knowledge from masked
language model pre-training. On top of this baseline, we add auxiliary output layers to the
representation model, which allow knowledge from labeled data for related tasks over mul-
tiple domains to be injected into the representation model by specific loss functions. Since
our goal is to optimize parsing performance, we do not treat each task equally, but instead

1. LLMs, such as Open AI ChatGPT and GPT4, still underperform the standard chart-based parser under
supervised training, as we will show in §4.
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Figure 1: Cross-domain and cross-task knowledge transfer from multiple source domains
and various heterogeneous tasks to the target domain constituency parsing based
on prefix-tuning.

transform auxiliary task data into forms that facilitate knowledge transfer for constituent
parsing (§3.2), and make loss design for parsing optimization only (§3.3).

As shown in Figure 1, we select four auxiliary tasks to improve constituency pars-
ing, including language modeling (LM) (Devlin et al., 2019), named entity recognition
(NER) (Finkel & Manning, 2009), combinatory categorial grammar (CCG) supertagging
(Steedman, 2001) and dependency parsing (DP) (Kübler, McDonald, & Nivre, 2009). We
collect the datasets of these auxiliary tasks covering various domains for knowledge transfer
on top of the source domain constituency treebank. The task domains include dialogue,
forum, law, literature and review for LM, news and restaurant for NER, news for CCG and
web for DP, for which existing labeled corpora are available. Given each training instance,
we set the prefix values according to the task and domain for informing the representa-
tion model. After joint training, our parser effectively integrates both domain and task
knowledge into a unified input representation.

We conduct experiments to verify the effectiveness of the proposed model on a news-
domain constituency treebank PTB (Marcus, Santorini, & Marcinkiewicz, 1993) and a
multi-domain constituency treebank MCTB (Yang, Cui, Ning, Wu, & Zhang, 2022) con-
sisting of five domains: dialogue, forum, law, literature and review. Experimental results
show that both domain knowledge transfer and task knowledge transfer are effective for
cross-domain constituency parsing. Our cross-domain constituency parser gives the best
reported performance on all of the five domains, outperforming various baselines, includ-
ing chart-based parsers (Kitaev & Klein, 2018), transition-based parsers (Liu & Zhang,
2017) and ChatGPT (Ouyang, Wu, Jiang, Almeida, Wainwright, Mishkin, Zhang, Agarwal,
Slama, Ray, et al., 2022).

To our knowledge, we are the first to allow a single constituent parser model to benefit
from both cross-task and cross-domain knowledge from a wide range of heterogeneously
labeled data, achieving the best reported results on standard benchmarks across different
domains.2

2. Our code is available at https://github.com/guopeiming/CD_ConsParing_HeterData.
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2. Related Work

Cross-domain Constituency Parsing. Constituency parsing is an important and fun-
damental task in computational linguistics, which has not been completely solved. The
main challenge is stable cross-domain parsing performance. Early work of constituency
parsing focuses on the news domain (Collins, 1997; Stern et al., 2017) and short sentences
(McClosky, Charniak, & Johnson, 2006, 2008). In recent years, the natural language pro-
cessing community has begun to pay attention to constituency parsing on different domains.
So there has been limited work investigating cross-domain constituency parsing. McClosky
et al. (2010) propose multiple source parser adaptation, which trains constituency parsers
on multiple domain treebanks and combines these models by linear regression. Joshi, Pe-
ters, and Hopkins (2018) study single source domain adaptation based on the contextualized
word representations, where they train the parsers on PTB only for similar target domains.
For syntactically-distant target domains, they employ a dozen partial annotations to im-
prove cross-domain constituency parsing performance. Fried et al. (2019) and Yang et al.
(2022) perform a systematic analysis on various constituency parsers. Yang et al. (2022)
annotate a constituency treebank MCTB, which contains five target domains. Our work is
this line since we also focus on cross-domain constituency parsing. However, we investigate
cross-domain and cross-task knowledge transfer for this problem to improve the utility of
heterogeneously labeled data sources.

Parser architectures. Researchers have developed various constituency parsers for in-
domain settings in the past years. Broadly speaking, there are four types of constituency
parsers: (1) chart-based parser (Stern et al., 2017; Kitaev & Klein, 2018; Kitaev, Cao, &
Klein, 2019), (2) transition-based parser (Zhu, Zhang, Chen, Zhang, & Zhu, 2013; Watan-
abe & Sumita, 2015; Liu & Zhang, 2017; Fernández-González & Gómez-Rodŕıguez, 2019;
Yang & Deng, 2020), (3) sequence labeling-based parser (Gómez-Rodŕıguez & Vilares,
2018; Kitaev & Klein, 2020; Amini & Cotterell, 2022), and (4) sequence-to-sequence-based
parser (Vinyals, Kaiser, Koo, Petrov, Sutskever, & Hinton, 2015; Liu, Zhu, & Shi, 2018;
Yang & Tu, 2022). Based on the pretrained language models, researchers exploit various
methods to improve the chart-based parser, which achieves state-of-the-art performance
compared with the other three types of parsers (Zhou & Zhao, 2019; Zhang, Zhou, & Li,
2020; Tian et al., 2020; Cui et al., 2022; Shi, Wang, Xiao, & Liu, 2022). Concretely, one class
of approaches adds regular terms to the loss objective to inject extra syntactic information
into the chart-based parser, such as grammar rules (Shi et al., 2022), non-local features (Cui
et al., 2022) or other parsing formalizations (Zhou & Zhao, 2019; Gu, Hou, Wang, Duan, &
Li, 2024). The other line of work does not change the loss function, but encodes syntactic
information (e.g., high-order features (Zhang et al., 2020) or n-grams (Tian et al., 2020;
Kim, Cho, Kim, & Choi, 2023)) into the encoder to improve in-domain constituency parsing
performance. Our parser combines the strengths of these two methods, extending the chart-
based parser to the cross-domain scenario and integrating multi-dimensional heterogeneous
information. We propose a novel multi-source prefix encoder and design a consistent loss
objective for transferring cross-task and cross-domain knowledge to constituency parsing.

Knowledge Transfer for Constituency Parsing. Finkel and Manning (2009) transfer
task knowledge to constituency parsing by a joint model of named entity recognition and
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constituency parsing, where entities are nested to the parse tree. Sun and Wan (2013)
propose several strategies to acquire pseudo constituency treebanks only from dependency
annotations. Zhou and Zhao (2019) exploit head-driven phrase structure grammar to encode
dependency parsing and constituency parsing jointly. Their joint model absorbs dependency
knowledge to improve constituency parsing performance. Yang and Tu (2022) formalize a
nested named entity as a constituency tree and propose a pointer net for nested named
entity recognition and constituency parsing to predict span boundaries in post-order. In
contrast to these methods which focus on one joint task, our work aims to transfer auxiliary
task knowledge to cross-domain constituency parsing, considering multiple tasks covering
multiple domains. In addition, we are the first to investigate the task transfer between CCG
supertagging and constituency parsing.

Prefix-tuning for Knowledge Transfer Prefix-tuning appends soft prefix vectors (Li &
Liang, 2021) to the input sentence for task-specific representation learning. There has been
work employing prefix-tuning for knowledge transfer. Yuan, Wang, Cao, and Li (2022) pro-
pose prefix-merging to transfer knowledge of text summarization and question answering to
assist few-shot learning in query-focused summarization. Chen, Li, Deng, Tan, Xu, Huang,
Si, Chen, and Zhang (2022), Chen, Li, Qiao, Zhang, Tan, Jiang, Huang, and Chen (2023)
employ prefix-tuning to transfer domain knowledge for named entity recognition. All these
works insert prefix into the generative pretrained language model such as BART (Lewis,
Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov, & Zettlemoyer, 2020) and GPT-
2 (Radford, Wu, Child, Luan, Amodei, Sutskever, et al., 2019), in contrast we attempt
to inject prefix vectors into an encoder-based pretrained language model, BERT (Devlin
et al., 2019). Besides, they consider domain knowledge transfer or task knowledge trans-
fer separately, while we consider task and domain knowledge transfer simultaneously and
design multiple prefixes to fuse cross-domain and cross-task data for cross-domain con-
stituency parsing. To the best of our knowledge, we are the first to empirically investigate
prefix-tuning for integrating multi-dimensional heterogeneous information.

3. Method

We build our model based on a chart-based neural constituency parser (§ 3.1), selecting four
auxiliary tasks (§ 3.2) as potential sources to maximize the utility of heterogeneous labeled
datasets. To bridge knowledge across multiple auxiliary tasks and domains, we develop
a framework (§ 3.3) that employs heterogeneous prefixes to integrate multi-dimensional
heterogeneous knowledge for cross-domain constituency parsing.

3.1 Baseline Constituency Parser

We employ a chart-based neural constituency parser (Stern et al., 2017; Kitaev & Klein,
2018; Teng & Zhang, 2018) as the backbone model, which formalizes constituency parsing
as a span-based classification task. The parser builds the hierarchical constituency syntax
tree based on the scores of the labeled spans (i, j, l), where i, j and l are the start and end
span endpoint and constituency label, respectively.

Given an input sentence X = x1 · · ·xn (n is the length), our parser first computes the
word representation xi based on the pretrained language model (PLM). Following Kitaev
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and Klein (2018), word-level hidden representation hi is generated by the stacked parti-
tioned transformers, which extract contextual features with content and position attention.
Then, a span encoder is adopted to obtain each span representation si,j in the sentence
by subtracting of the word representation of the span endpoints, which is detailed in the
Eq 5. Subsequently, based on the multi-layer perceptron (MLP), the parser assigns a score
sc(i, j, l) to each labeled span, which represents the score of the span as a constituent with
the syntactic label l. The scoring process of the labeled span triplet is as follows:

x1, · · · ,xn = PLM(X)

h1, · · · ,hn = WordEncoder(x1, · · · ,xn)

si,j = SpanEncoder(hi,hj)

sc(i, j, ·) = MLPc(si,j),

(1)

where PLM denotes pretrained language model. Finally, the score of the constituency syntax
tree T is computed by summing the scores of all the labeled spans within it. The chart-
based parser exploits the CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967) to
efficiently search for the parse tree with the highest score, which is then used as the predicted
output T̂ :

s(T ) =
∑

(i,j,l)∈T

sc(i, j, l)

T̂ = arg max
T

s(T ).
(2)

For training, we minimize the tree-based max-margin loss Lc following Stern et al. (2017)
and Kitaev and Klein (2018):

Lc = s(T̂ )− s(T ∗) + ∆(T̂ , T ∗), (3)

where ∆ represents the Hamming difference between the predicted parse tree T̂ and the
gold-standard parse tree T ∗.

3.2 Auxiliary Tasks

We make use of heterogeneous data over four auxiliary tasks, conducting special data pro-
cessing that converts cross-domain and cross-task data to a format closer to constituency
parsing, which narrows the gap between auxiliary tasks and constituency parsing, thereby
making knowledge transfer more efficient. Besides, we formulate the loss objectives of these
four auxiliary tasks as a consistent format, which is described in §3.3.

Language Modeling. Language modeling can make PLM acquire domain knowledge on
available raw corpora from the target domain (Gururangan, Marasović, Swayamdipta, Lo,
Beltagy, Downey, & Smith, 2020). Therefore, we consider it as a simple and effective method
to transfer knowledge for cross-domain constituency parsing. Following Devlin et al. (2019)
and Gururangan et al. (2020), we perform masked language modeling on an encoder-based
PLM (Devlin et al., 2019) and formulate it as a partial sequence labeling task as shown in
Figure 2(a).

Instead of random sampling for token masking, we design a strategy of masking tokens
based on their probability of acting as a constituent span boundary. Specifically, we first
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(a) Language Modeling
Input: Such an [mask] might be too [mask] to [mask] Rail .
Output: Such an approach might be too favourable to Queensland Rail .

(b) Named Entity Recognition
Input: Are there any 24 hour breakfast places nearby ?
Output: (3, 4, MISC), (5, 5, MISC), (7, 7, LOC)

(c) CCG Supertagging
Input: It has no bearing on our work force today .
Output: NP, (S[dcl]\NP)/NP, NP[nb]/N, N, (NP\NP)/NP, NP[nb]/N, N/N, N, NP\NP, .

(d) Dependency Parsing
Input: In Ramadi , there was a big demonstration .
Output: (1, 2, ←), (2, 5, ←), (3, 5, ←), (4, 5, ←), (0, 5, →), (6, 8, ←), (7, 8, ←), (5, 8, →), (5, 9, →)

Figure 2: Format of input and output for four auxiliary tasks. Language modeling and
CCG supertagging take sequence labeling forms, while named entity recognition
and dependency parsing are turned into span classification tasks.

calculate the number of times each word in the sentence acts as a constituent span boundary
and then normalize the frequency distribution to obtain the masking probability. In total,
30% of the tokens in the input sentence are masked, where masked tokens are substituted
by the [mask] token, random token and themselves of the probability of 0.8, 0.1 and 0.1,
respectively.

Named Entity Recognition. We consider the NER task as it has been proven benefi-
cial to constituency parsing (Finkel & Manning, 2009, 2010), where named entities usually
correspond to the NP tag in the constituency syntax tree, which is the most frequent con-
stituent category. As shown in Figure 2(b), NER also can be treated as a span classification
task like consistency parsing.

For NER datasets, following Finkel and Manning (2009), we only retain the entity
that matches a constituent span exactly or aligns to multiple continuous children nodes of
a shared parent node. We omit the entities that cross non-sibling constituents to avoid
introducing unnecessary ambiguity to constituency parsing. Additionally, we normalize
entity types into four common categories: Person, Location, Organization, and Misc.

CCG Supertagging. Combinatory Categorial Grammar (Steedman, 2001) is a lexical-
ized grammatical formalism in which the lexical categories of words in a sentence are known
as super tags. Such CCG super tags represent rich lexical syntactic knowledge, which can
be treated as a form of shallow parsing. Therefore, CCG supertagging can provide rele-
vant knowledge for hierarchical phrase structure syntax. We convert CCG treebank into
token-level CCG supertags, which can be treated as a sequence labeling task as shown in
Figure 2(c).

Dependency Parsing. Dependency parsing (Kübler et al., 2009) and constituency pars-
ing are the two most popular sentence-level grammars in computational linguistics. De-
pendency trees adopt labeled dependency arcs to represent syntactic information, while
constituency trees use hierarchical nested constituents to organize sentences. These two
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Figure 3: The architecture of prefix-based cross-domain and cross-task knowledge transfer
model.

grammar formalisms can be converted into each other (Magerman, 1994; Nivre, Hall, &
Nilsson, 2006; Johansson & Nugues, 2007; Xia & Palmer, 2001) and syntactic task knowl-
edge can be transferred between dependency and constituency parsing (Sun & Wan, 2013;
Zhou & Zhao, 2019; Gu et al., 2024).

We formulate dependency parsing as a span classification task and integrate dependency
structure into chart-based constituency parser for better syntax task knowledge transfer.
Specifically, a dependency tree is composed of directed dependency arcs with dependency
relation labels, which link head words and dependent words. We treat the dependency arc
as a span, where the head and dependent word are the span boundaries. Compared with
dependency relation labels, dependency directions imply the hierarchical relationship of con-
stituent spans, which is essential for constituency parsing. As a result, we use dependency
arc direction as the label of the span as shown in Figure 2(d).

3.3 Prefix-based Knowledge Transfer

The overall prefix-based cross-domain and cross-task knowledge transfer model is illustrated
in Figure 3. Specifically, the model enhances the basic constituency parser for cross-domain
constituency parsing from two perspectives: first, cross-domain and cross-task prefix repre-
sentation adopts different prefixes to decompose the general, task and domain representa-
tions in the PLM and fuse multi-dimensional heterogeneous data. Second, cross-domain and
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cross-task joint training transfers task and domain knowledge to cross-domain constituency
parsing based on the supervised signals from various tasks.

Cross-domain and Cross-task Prefix Representation. As a representative method
of soft prompt, prefix tuning (Li & Liang, 2021) inserts an additional key-value prefix vector
pair into each transformer layer in the PLM. As shown in Figure 3, we define three types of
prefixes to decompose the different aspects of knowledge and representation. Specifically, the
model exploits the task and domain prefix to extract the feature related to task formalization
and domain distribution, respectively. Besides, the shared prefix is responsible to activate
the general knowledge in PLM, which is agnostic to task and domain.

For the input sentence from different tasks and domains, Xt and Xd denote the task
type and domain type, respectively. The cross-domain and cross-task prefix representation
finds the corresponding task soft prompt vector Et and domain soft prompt vector Ed and
prepends the shared soft prompt vector Es to them. In particular, domain prefix activates
domain-specific features in PLM, while task prefix focuses on extracting task-specific rep-
resentations. The shared prefix can control domain- and task-agnostic knowledge of PLM.
Following Li and Liang (2021) and Yuan et al. (2022), we then exploit reparametrization
to generate the shared prefix P s, task prefix P t and domain prefix P d, which leads to
stable optimization and better performance: Finally, we inject the prefix vectors into the
transformer layers and generate word representations based on the PLM:

Es,Et,Ed = SoftPrompt(Xt, Xd)

P s,P t,P d = MLP([Es;Et;Ed])

x1, · · · ,xn = [P s;P t;P d] ⋄ PLM(X),

(4)

where Es, Et and Ed ∈ Rl×s are learnable parameters, l and s are the length and hidden
size of the prefix prompt, respectively, ⋄ is the prefix vector injection operation.

Joint Training. Cross-domain and cross-task training integrates the supervised signals
of different tasks into the cross-domain constituency parser and achieves task and domain
knowledge transfer. To mitigate negative transfer in multi-task learning and narrow the
task formalization gap between constituency parsing and auxiliary tasks, joint cross-domain
and cross-task training in Figure 3 converts NER and DP into span-based classification
tasks and applies the final classification layers of language model and CCG supertagging
to span-level representations, rather than token-level representations. As a result, the span
representation si,j for the three aforementioned auxiliary tasks is computed by the shared
encoder and PLM. Then we feed the span representations into different MLPs for scoring
task-dependent label sets:

si,j = (
−→
hj −

−−→
hi−1)⊕ (

←−−
hj+1 −

←−
hi)

sA(i, j, ·) = MLPA(si,j),
(5)

where A ∈ {LM,NER,CCG,DP}.
For each auxiliary tasks, joint training minimizes the cross-entropy loss function be-

tween the predicted probability distribution p̂A
i,j and the gold-standard labels p∗A

i,j based on

9



Peiming Guo, Meishan Zhang, Yulong Chen, Jianling Li, Min Zhang, & Yue Zhang

softmax:
p̂A
i,j = SoftMax(sA(i, j, ·))

LA = −
∑

1≤i≤j≤N

p∗A
i,j log p̂A

i,j
(6)

In particular, language modeling and CCG supertagging are token classification tasks,
while NER and DP are span classification tasks. Therefore, for language modeling and
CCG supertagging, we only compute the loss on the spans of length 1 as illustrated in the
blue leaf node in Figure 3. In other words, j always equals to i in Eq 6 for these two tasks.

Finally, we jointly optimize the multi-task loss functions:

L = Lc + αLA, (7)

where α is a factor to weight the auxiliary tasks.

Test Scenarios For the zero-shot scenario, we add the domain prefix that is tuned on the
LM corpora and the constituency parsing task prefix to the input sentence. For the few-
shot scenario, we first pre-train the whole parser on the multi-dimensional heterogeneous
datasets and then fine-tune the domain prefix again on the limited number of examples.

4. Experiments

We conduct experiments to verify the effectiveness of our proposed knowledge transfer
method and analyse to gain a deeper understanding of knowledge transfer for cross-domain
constituency parsing.

4.1 Experimental Setup

Datasets. We use PTB (Marcus et al., 1993) and MCTB (Yang et al., 2022) as the source
and target constituency parsing datasets, respectively. For domain knowledge transfer, we
collect 5 domain raw corpora with sources matching the target treebank in MCTB for the
language modeling task, including Wizard (Dinan, Roller, Shuster, Fan, Auli, & Weston,
2019), Reddit (Völske, Potthast, Syed, & Stein, 2017), ECtHR (Stiansen & Voeten, 2019),
Gutenberg3, and Amazon (He & McAuley, 2016).

For task knowledge transfer, we select CoNLL03 (Tjong Kim Sang & De Meulder, 2003)
and restaurant (Liu, Meng, Zhang, Xu, Chen, & Zhou, 2019b) for NER, ccgbank (Hocken-
maier & Steedman, 2007) for CCG supertagging and EWT treebank in universal dependen-
cies v2.2 (Nivre, de Marneffe, Ginter, Hajič, Manning, Pyysalo, Schuster, Tyers, & Zeman,
2020) for dependency parsing. We sample 10,000 sentences with lengths ranging from 8
to 256 for the corpora of auxiliary tasks. If the number of filtered sentences is less than
10,000, we include the entire dataset. For each batch, we sample examples of constituency
parsing and auxiliary tasks by the 1:3 proportion. Specific tasks, domains and number of
sentences are listed in Table 1. Additionally, we obtain pseudo constituency parse trees
for data processing of auxiliary tasks using the basic constituency parser. Specifically, we
sample 10/20/50 examples from MCTB for the few-shot setting. To avoid sample bias, we
sample three times to generate different few-shot training sets by different seeds and report
the average results.

3. https://www.gutenberg.org/
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Dataset Task Domain #Sentence

Multi-task Training Data

PTB Constituency Parsing news 39,832
CoNLL03 Named Entity Recognition news 10,000
restaurant Named Entity Recognition restaurant 8,662
ccgbank CCG Supertagging news 10,000
EWT Dependency Parsing web 10,000
Wizard Language Modeling dialogue 10,000
Reddit Language Modeling forum 10,000
ECtHR Language Modeling law 10,000
Gutenberg Language Modeling literature 10,000
Amazon Language Modeling review 10,000

Low Resource Evaluation Data

MCTB

Constituency Parsing dialogue 1,000
Constituency Parsing forum 1,000
Constituency Parsing law 1,000
Constituency Parsing literature 1,000
Constituency Parsing review 1,000

Table 1: Summary of Datasets used in our paper. We train our model on source con-
stituency parsing (PTB) and auxilary tasks in a multi-task learning manner and
evaluate the resulting model on the MCTB benchmark in a low resource setting.

Evaluation. We use precision (P), recall (R), and F1 score (F1) of labeled bracketed spans
to evaluate the performance of constituency parsing. In particular, we compute metrics of
parsing via the standard toolkit evalb4. We conduct the experiments on three different
random seeds and report the average results, ignoring punctuation following (Kitaev &
Klein, 2018).

In particular, we evaluate our cross-domain and cross-task knowledge transfer model
on the constituency parsing task only and do not report the performance of the auxiliary
tasks. This is because both the training objective and the task formulation of auxiliary tasks
are designed for constituency parsing optimization, which makes evaluating the auxiliary
tasks difficult. Take NER for example, we delete entities crossing constituency spans and
unify entity types into four categories. Therefore, it is difficult to recognize some entities,
especially cross-domain entities with unseen types. As for dependency parsing, our auxiliary
loss function is different from the conventional optimization objective, and it only involves
dependency directions not dependency relations.

Hyperparameters. We use BERT-large-uncased as pretrained language model back-
bone (Devlin et al., 2019). The lengths l and hidden sizes d of shared, task and domain
prefix are 25 and 1024, respectively. Weight factor of auxiliary tasks α is 0.1 for multi-task
learning. Following Kitaev and Klein (2018), we set partition transformer layers to 2 for all
chat-based parsers. For model training, we use the AdamW algorithm with learning rate

4. https://nlp.cs.nyu.edu/evalb/
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3e-5, batch size 60, weight decay 0.01, linear learning rate warmup over the first 400 steps
to optimize parameters. We stop early training when the F1 score does not increase on the
PTB development set for 4 epochs.

Baselines. We compare the proposed method with the following baseline models: (1)
a strong Transition-based model (Liu & Zhang, 2017), whose results are reported by
Yang et al. (2022), (2) a strong chart-based model (Kitaev & Klein, 2018), which is re-
implemented by us as the basic constituency parser and (3) DAPT (Gururangan et al.,
2020), which continues pretraining on the target domain texts and then fine-tunes the
chart-based constituency parser on the source treebank.

We also report the constituency parsing performance of ChatGPT (Brown, Mann, Ry-
der, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, et al., 2020; Ouyang
et al., 2022) 5, which is one of the most popular large-scale language models at present. We
use gpt-3.5-turbo to generate bracketed parse tree with in-context-learning (ICL) (Brown
et al., 2020), where 10 constituency tree examples are pre-pended before the testing instance
as demonstrations. For zero-shot cross-domain constituency parsing, we select demonstra-
tions from the source treebank PTB, to which we refer as ChatGPT in Table 2. For few-shot
learning, we employ examples from the target domain treebank (MCTB), following the same
settings for the other models in Table 3.

Notably, the outputs can contain numerous errors, including unmatched brackets, omit-
ted words from input sentences, and responses lacking bracketed parse trees, because Chat-
GPT predicts the next token auto-regressively and does not ensure the generation of valid
constituency parse trees. We report results both considering and not considering invalid
trees in Table 2 and Table 3.

4.2 Main Results

In this subsection, we report results on zero-shot and few-shot settings to verify the effec-
tiveness of our proposed approach.

Zero-shot Results. Table 2 lists zero-shot results on the 5 target domains in MCTB.
Based on the basic constituency parser, Chart, we incrementally append auxiliary tasks
(C: constituency parsing, L: language modeling, D: dependency parsing, N: NER and T:
CCG supertagging) to transfer domain and task knowledge for cross-domain constituency
parsing.

First, our CLDNT method, which incorporates all auxiliary tasks from diverse domains,
outperforms all baselines by a large margin. In particular, CLDNT (avg. 87.78 F1) shows
better performance than previous best reported Chart (avg. 87.14 F1), on which CLDNT
is built, across domains, with an averaged improvement of 0.64 F1 score. In addition, we see
that model performance varies across domains, and all models show the best performance
in Law. One main reason can be that text in Law is most similar to general news text, with
formal language written in a monologue style.

Second, with labeled data for more tasks being integrated (e.g., from CL, CLN to
CLDNT ), our framework can benefit from diverse tasks of multiple domains. Compared
with CL (avg. 87.36 F1), our three auxiliary structure prediction tasks, dependency parsing

5. https://chat.openai.com/
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Method
Dialogue Forum Law Literature Review

P R F P R F P R F P R F P R F

ChatGPT
full 32.23 28.79 30.54 20.18 17.70 18.86 34.54 22.90 24.93 12.78 11.24 11.96 31.33 26.42 28.67

valid only 74.97 66.33 70.38 75.30 66.03 70.36 88.57 74.11 80.70 79.87 70.23 74.74 75.50 63.66 69.08

Transition – – 85.56 – – 86.33 – – 91.50 – – 84.96 – – 83.89
DAPT 88.28 84.31 86.25 87.63 86.46 87.04 94.35 89.77 92.00 86.26 86.59 86.42 86.13 81.71 83.86
Chart 88.12 84.18 86.10 87.59 86.27 86.92 94.36 89.89 92.07 86.13 86.43 86.28 86.71 82.05 84.32

CLS (Ours) 88.11 84.53 86.28 87.67 86.30 86.98 94.00 90.03 91.97 86.25 87.08 86.66 86.86 82.13 84.43
CL (Ours) 88.42 84.46 86.39 87.85 86.28 87.06 94.03 90.05 92.00 86.29 87.16 86.72 87.16 82.26 84.64
CLD (Ours) 88.50 84.52 86.46 87.95 86.44 87.19 94.11 90.20 92.11 86.37 87.22 86.79 87.26 82.74 84.94
CLN (Ours) 88.57 84.65 86.57 87.99 86.39 87.18 94.20 90.28 92.20 86.28 87.19 86.73 87.21 82.60 84.84
CLT (Ours) 88.56 84.44 86.45 87.81 86.47 87.14 94.21 90.41 92.27 86.14 87.50 86.82 87.24 82.64 84.88

CLDNT (Ours) 88.63 85.49 87.03 88.42 86.82 87.61 94.37 90.55 92.42 86.37 87.36 86.86 87.24 82.90 85.01

Table 2: Zero-shot results on MCTB benchmark. C, L, N, T and D indicate constituency
parsing, language modeling, named entity recognition, CCG supertagging and
dependency parsing, respectively. Specially, for the language modeling task, we
perform experiments on the single target domain corpus LS and multiple domain
corpora L to show the influence of cross-domain texts. The best results and the
second-best results of each group are noted by bold and underline, respectively.

(D), NER (N) and CCG supertagging (T ), advance the results on all domains, with an
improvement of 0.42 F1 score. Such results show that our framework successfully allows
model to transfer the task knowledge to constituency parsing of a target domain. Also,
compared with only using vanilla DAPT for domain adaptation, our CL also shows higher
performance across all tasks. This verifies that our designs of span boundary masking (§ 3.2)
is more efficient than vanilla DAPT and can be a more useful.

Third, Transition underperforms Chart across five target domains. This observation ap-
plies to in-domain settings as well (Yang et al., 2022). In fact, the chart-based parser also is
superior to sequence-labeling-based parsers and sequence-to-sequence-based parsers (Amini
& Cotterell, 2022). Based on the pretrained language models, the chart-based parser
achieves competitive parsing performance.

Finally, ChatGPT shows poor performance on all domains, which suggests that such
generative LLMs can be less capable of solving structure prediction problems (Roy, Thom-
son, Chen, Shin, Pauls, Eisner, & Van Durme, 2024). We find that ChatGPT tends to
generate invalid parse trees. Take the input sentence “He is right .” for example, ChatGPT
might generate unmatched brackets (e.g., “[S [NP [PRP He]] [VP [VBD was] [ADJP [JJ
right] [. .]”) or drop sentential words (e.g., “[S [VP [VBD was] [ADJP [JJ right]]] [. .]]”).
Therefore, when taking all outputs of ChatGPT (the second line full) into evaluation, its
performance decreases severely.

Few-shot Results. Table 3 reports few-shot results (F1 scores) for the 5 target domains
on 10, 20 and 50 shots. First, our CLDNT model outperforms Chart baseline and ChatGPT
by a large margin in all domains and all few-shot settings, which demonstrates the effec-
tiveness of our method. Furthermore, compared with zero-shot performance, our CLDNT
model and Chart show better performance, and when provided with more training instances
(from 10 to 50), model performance consistently improves, which can be attributed to the
fact that models are presented with training instances of target domains.
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Method
Dialogue Forum Law Literature Review

10 20 50 10 20 50 10 20 50 10 20 50 10 20 50

ChatGPT
full 40.02 – – 27.31 – – 23.89 – – 19.82 – – 41.25 – –

valid only 73.16 – – 73.41 – – 79.64 – – 76.82 – – 71.24 – –

Chart 86.82 87.37 87.62 87.69 87.98 88.13 92.35 92.57 92.70 86.90 87.34 87.55 84.96 85.28 85.50

CLDNT 87.65 87.82 88.21 88.15 88.33 88.51 92.54 92.78 93.00 87.89 88.38 88.32 85.87 86.06 86.44

Table 3: Few-shot results (F1 score) for the target domains on 10, 20 and 50 shots. Please
note that due to the length limit of OpenAI API, we only present the 10-shot ICL
results for ChatGPT.

Method R P F

CLDNT 88.63 85.49 87.03

-Prefix -1.06 -0.97 -1.01
-EM -0.35 -0.27 -0.30
-DD -0.33 -0.24 -0.28
-LC -0.22 -0.19 -0.20
-BM -0.16 -0.15 -0.15

Table 4: Ablation experiments. Prefix: vanilla-prefix, which removes our novel multiple
prefix strategy. EM: entity match, DD: dependency direction as span label, LC:
label conversion. BM: boundary masking.

It is worth noting that our 10-shot CLDNT can outperform 50-shot Chart on most tasks
(e.g., for the dialogue domain, 10-shot CLDNT : 87.65, 50-shot Chart : 87.62), which shows
that our method can efficiently adapt knowledge from limited training instances, thereby
having its advantages in a low-resource setting.

4.3 Analysis

To better understand the effectiveness of cross-domain and cross-task knowledge transfer
of our method, we conduct in-depth analyses on the model output in the dialogue domain
unless when otherwise specified.

Ablation Experiment. To verify the effectiveness of our multiple prefix strategy, we use
vanilla-prefix to denote conventional prefix-tuning, which exploits single shared prefix with
the same length as our proposed model. Intuitively, vanilla-prefix can not handle merging
multi-source heterogeneous corpora to transfer domain knowledge and task knowledge be-
cause it appends the same prefix to all heterogeneous input data. We also perform ablation
experiment to verify the effectiveness of the data processing in § 3.2, which transforms the
diverse data from various auxiliary tasks into the format closer to constituency parsing.
Specifically, EM and LC represent entity match and label conversion for the named entity
recognition task, while constituent boundary mask for the language model task and de-
pendency direction as span label for dependency parsing task are denoted as BM and DD,

14



Cross-domain Constituency Parsing by Leveraging Heterogeneous Data

0 2.5k 5k 7.5k 10k 12.5k 15k 17.5k
Size of Domain Corpora

F
S

co
re

CLS CL CLDNT

Figure 4: F score of different models with respect to the size of domain corpora.

respectively. -DD means that the dependency relation is exploited as the span label not the
dependency direction.

Table 4 reports the results of ablation experiments. The results of vanilla-prefix are
even lower than the basic chart-based constituency parser. In addition, for the three data
processing operations, EM has the greatest impact. This is reasonable because unmatched
entities introduce substantial noise for cross-domain constituency parsing.

Corpora Size. Intuitively, the performance of our cross-domain and cross-task knowledge
transfer model should be related to the size of domain corpora. Here we conduct an exper-
imental study to examine the relation between F1 score and domain corpus size for three
models: CLS , CL and CLDNT. The results are shown in Figure 4, where x-axis denotes
the size of domain corpora and y-axis denotes F1 score for the target domain constituency
parsing.

When the size of domain corpora is zero, auxiliary tasks of our model do not contain
language model, thus CLS and CL are equivalent to the basic chart-based constituency
parser. As the size grows larger in the initial phase, the F1 score of all the models in-
crease significantly, which demonstrates the effectiveness of domain corpora for language
model task for cross-domain constituency parsing. The performance stops increasing after
10k sentences for each domain are utilized, which could be noise for our cross-domain and
cross-task knowledge transfer model. The larger corpora of auxiliary tasks are noise for our
primary task, constituency parsing. In other words, this phenomenon can also be under-
stood from the angle that the larger corpora implicitly increased the weight of the relevant
task and domain, and hurt the performance of cross-domain constituency parsing. Besides,
there is a large gap between CLDNT and the other models, which shows the effectiveness
of more auxiliary tasks, including dependency parsing, named entity recognition and CCG
supertagging.

Prefix Visualization. The learned prefix embeddings can be visualized to observe the
relationship between tasks and domains. Here, we show the visualization results in Figure 5,
where Principal Component Analysis (PCA) is applied to map the high-dimension prefix
embedding representation to two-dimentional space. For the cross-domain and cross-task
knowledge transfer model, the first three embeddings in shared, task and domain prefix
are selected for visualization. For vanilla-prefix, we select the prefix embedding with the
same position as our model. The embeddings from the same prefix are closer to each other
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(a) vanilla-prefix (b) our model

task domain share

Figure 5: Prefix embedding visualization of vanilla-prefix and our model.

in Figure 5b, where our multiple prefix strategy can distinguish general, task and domain
representations. However, there is no pattern in the visualization of vanilla-prefix.

5. Conclusion

We leveraged heterogeneous data to transfer cross-domain and cross-task knowledge to con-
stituency parsing, selecting language model, named entity recognition, CCG supertagging
and dependency parsing as auxiliary tasks, proposing a novel multiple prefixes strategy
to make use of heterogeneous source of labeled and unlabeled data. Experimental results
showed that our cross-domain constituency parser gains the state-of-the-art performance
on a range of test domains compared with various baselines, including basic chart-based
parser, transition-based parser and ChatGPT. To our knowledge, this is the first attempt
to make use of the most available multi-source heterogeneous data to improve constituency
parsing.
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Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. In Dependency parsing,
pp. 11–20. Springer.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V.,
& Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-training for

18



Cross-domain Constituency Parsing by Leveraging Heterogeneous Data

natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics.

Li, J., Zhang, M., Guo, P., Zhang, M., & Zhang, Y. (2023). Llm-enhanced self-training
for cross-domain constituency parsing. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing.

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing.

Liu, J., & Zhang, Y. (2017). In-order transition-based constituent parsing. Transactions of
the Association for Computational Linguistics, 5.

Liu, L., Zhu, M., & Shi, S. (2018). Improving sequence-to-sequence constituency parsing.
In Proceedings of the AAAI Conference on Artificial Intelligence.

Liu, P., Qiu, X., & Huang, X. (2017). Adversarial multi-task learning for text classifica-
tion. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics.

Liu, S., Johns, E., & Davison, A. J. (2019a). End-to-end multi-task learning with atten-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Liu, Y., Meng, F., Zhang, J., Xu, J., Chen, Y., & Zhou, J. (2019b). GCDT: A global context
enhanced deep transition architecture for sequence labeling. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.

Magerman, D. M. (1994). Natural language parsing as statistical pattern recognition. stan-
ford university.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19 (2), 313–330.

McClosky, D., Charniak, E., & Johnson, M. (2006). Effective self-training for parsing. In
Proceedings of the Human Language Technology Conference of the NAACL, Main
Conference.

McClosky, D., Charniak, E., & Johnson, M. (2008). When is self-training effective for
parsing?. In Proceedings of the 22nd International Conference on Computational Lin-
guistics.

McClosky, D., Charniak, E., & Johnson, M. (2010). Automatic domain adaptation for
parsing. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics.

Nivre, J., de Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D., Pyysalo, S., Schuster,
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